On Local Linear Estimation in Nonparametric Errors-in-variables Models
نویسندگان
چکیده
Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naive estimator delivers an estimation of the tangent.
منابع مشابه
THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملInstrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors
This paper presents new instrumental variables estimators for nonparametric models with discrete endogenous regressors. The model speci cation is su ciently general to include structural models, triangular simultaneous equations and certain models of measurement error. Restricting the analysis to discrete endogenous regressors is an integral component of the analysis since a similar model with ...
متن کاملNonparametric Regression for Dependent Data in the Errors-in-Variables Problem
We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear esti...
متن کاملUsing SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems
SIMEX methods are attractive for solving curve estimation problems in errors-in-variables regression, using parametric or semiparametric techniques. However, nonparametric approaches are generally of quite a different type, being based on, for example, kernels, local-linear modeling, ridging, orthogonal series, or splines. All of these techniques involve the challenging (and not well studied) i...
متن کامل